

1.1

1.2

1.3

1.4

1.5

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.8

1.9

Table	of	Contents
Introduction

Auth	operations

Signature	operations

Unattended	signature	operations

Extend	signature	operations

API

Ping

User	profile

Certificate

Sign

Unattended	signature

Extend	signature

Encrypt	/	Decrypt

Quick	integration	examples

Sample	application

Fortress	Desktop	(CSP)

2

Viafirma	Fortress	-	integration	guide
This	web	guide	is	also	available	in	PDF	format:

https://doc.viafirma.com/viafirma-fortress/integration/en/documentation.pdf

Requirements
For	testing	Fortress	services,	OAuth	credentials	are	required.	Please	contact	fortress@viafirma.com	for	this	purpose.

Last	review:	November-2024

Introduction

3

https://doc.viafirma.com/viafirma-fortress/integration/en/documentation.pdf

Authenticating	users	/	authorizing	operations
End	users	should	prove	their	identity	to	execute	authentication	/	signature	operations,	by	one	or	two	factors	of
authentication	(also	called	IdP:	identity	providers).	Third-party	applications	are	allowed	to	provide	restrictions	to	this
behaviour	(which	ones	/	how	many	of	them	will	be	used).

These	factors	of	authentication	are	classified	in	three	categories:

Based	in	Knowledge	(Something	I	Know)
Based	in	Possession	(Something	I	have)
Based	in	Inherence	(Something	I	am)

When	two	factors	of	authentication	are	used,	factors	of	different	categories	should	be	used	(for	instance,	first	a
knowledge	factor	and	later	a	possession	one).

Request	authorization
During	the	authorization	phase,	end	user	will	be	redirected	to	a	Viafirma	Fortress	user	interface,	where	the	user	ID	has
to	be	entered,	and	later	user	should	provide	valid	responses	to	one	or	two	factors	of	authentication.	For	instance,	a	user
can	be	asked	a	PIN	and	then	a	One-Time-Password	sent	to	the	user's	mobile	phone	in	an	SMS	message.

Viafirma	Fortress	provide	a	web	interface	for	this	purpose,	located	in	the	following	URL:

{viafirma_fortress_url}/oauth2/v1/auth

({viafirma_fortress_url}:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress)

The	web	interface	will	provide	authentication	screens	for	the	user,	using	the	factors	of	authentication	recorded	in	the
system	for	the	specified	user.	This	auth	URL	can	receive	some	parameters	which	are	used	to	prepare	the	authentication
/	authorization	request:

{viafirma_fortress_url}/oauth2/v1/auth?

scope=profile|certificate|certificates&

state=&

redirect_uri={authorized_url_callback}&

response_type=code&

client_id={systemcode}&

user_code={usercode}

Param Value Desc

scope
profile	/
certificate	/
certificates

profile:	used	to	request	the	authorization	to	access	to	user	profile
information,	like	name,	email,	etc.	The	following	message	will	be	shown	on
screen:

certificate:	used	to	request	authorization	to	access	to	a	specific	digital
certificate	belonging	to	the	end	user.	The	following	message	will	be	printed
on	screen:

certificates:	used	to	request	authorization	to	access	to	any	of	the	digital
certificates	belonging	to	the	end	user.	The	following	message	will	be	printed
on	screen:

Auth	operations

4

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

state [string] OPTIONAL;	any	value	can	be	sent	by	third-party	application,	which	will	be	sent
back	by	Viafirma	Fortress	to	the	redirect_uri

redirect_uri URL Must	be	included	in	system_client	Viafirma	Fortress	configuration

response_type code It	should	be		code		for	webapps

client_id [string] third-party	application	code,	which	has	been	recorded	in	Viafirma	Fortress

user_code [string] user	code	as	recorded	in	Viafirma	Fortress,	for	example,	citizen-id,	passport-
id,	etc.

Identity	providers	(IDPs)

An	identity	provider	is	a	factor	of	authentication	that	protects	user	profile	and	certificates	information.	These	IDPs	are
enabled	or	disabled	in	Viafirma	Fortress	setup,	and	can	be	later	associated	with	users.	These	IDPs	are	used	by
Viafirma	Fortress	to	make	end	users	prove	their	identity	(for	instance:	entering	a	PIN,	or	password,	entering	an	OTP
code	sent	to	an	email	address	or	a	mobile	phone	via	SMS,	etc.).

In	order	to	verify	if	an	IDP	is	active,	settings	following	this	pattern:		fortress.idp.{idp_code}.active		can	be	checked	(as
included	in	the	Installation	Manual).

Auth	operations

5

Once	the	user	identification	is	successfully	performed,	according	to	the	request	settings	(one	/	two	factors,	etc.),	Viafirma
Fortress	considers	the	operation	has	been	authorized	by	end	user	and	redirects	back	to	authorized_url_callback,
returning	control	back	to	the	third	party	application.

When	the	passed	scope	of	authorization	is	certificate	or	certificates,	after	the	successful	identification,	Viafirma
Fortress	will	provide	the	end	user	a	list	of	the	active	digital	certificate/s	available	for	selection,	returning	to	the	client
application	once	a	specific	certificate	has	been	selected	by	user.

Auth	operations

6

Email	IDP

Viafirma	generates	an	OTP	code	(otp	-	one	time	password)	which	is	sent	to	the	user	email	address.	User	is	requested
to	enter	this	code	in	the	web	interface.

OTP	SMS	IDP

Viafirma	generates	an	OTP	code	(otp	-	one	time	password)	which	is	sent	to	the	user	mobile	phone	number	via	SMS.
User	is	requested	to	enter	this	code	in	the	web	interface.

Auth	operations

7

OTP	(soft	token)	IDP

In	this	case,	the	OTP	code	is	generated	by	Google	Authenticator	or	Viafirma	OTP	apps,	available	for	iOS	and	Android
mobile	devices.

LDAP	IDP

User	is	requested	to	provide	LDAP	credentials	(user/password).	LDAP	settings	must	be	configured	during	the
installation	and	configuration	phases.

Auth	operations

8

PIN	IDP

Users	are	requested	to	provide	the	PIN	(personal	identification	number,	a	positive	4-digits	integer	number)	which	was
registered	by	them	in	the	platform.

Password	IDP

Similar	to	the	PIN	IDP,	Users	are	requested	to	provide	the	password	registered	by	them	in	the	platform.

Getting	the	authorization/authentication	process	response

Auth	operations

9

As	explained	before,	once	the	user	authorizes	the	operation	and	the	identification	is	successfully	performed,	according
to	the	request	settings	(one	/	two	factors,	etc.),	Viafirma	Fortress	redirects	back	to	authorized_url_callback,	returning
control	back	to	the	client	application,	including	the		code		param	in	the	redirect	URL	querystring:

{authorized_url_callback}?state=&code={authorization_code}

Callback	sample:

https://example.com/response?state=&code=9a3fff39-079c-45ec-b263-7d80afb18161

Denied	response	denied	or	response	with	errors

In	case	the	user	does	not	authorize	the	request	or	in	the	event	of	any	kind	of	errors,	Viafirma	Fortress	will	redirect	user	to
authorized_url_callback	URL	including	the	param		error		in	the	querystring:

{authorized_url_callback}?error={error_code}&state=

Error	callback	sample:

http://example.com/?error=access_denied&state=

Getting	an	access	token

Once	the	client	app	has	received	a	valid	authorization-code	(code),	an	access	token	should	be	obtained	by	redeeming
the	authorization	code:

Method:		POST	
URL:		{viafirma_fortress_url}/fortress/oauth2/v1/token	

Params:

Param Desc

code code	returned	in	the	authorization	process	(included	in	redirect	URL)

client_id client	id	(OAuth	credentials).

client_secret client	secret	(OAuth	credentials).

redirect_uri any	authorized	URL	in	the	client	application	configuration

grant_type 	authorization_code		for	end	users	authorizations	and		client_credentials		for	client	apps
authorizations.

Responses	are	returned	using		application/json		format:

{

		"access_token":	"1/fFAGRNJru1FTz70BzhT3Zg",

		"expires_in":	3920,

		"token_type":	"Bearer",

		"user_code":	"11111111H"

}

When	grant_type	value	is		client_credentials	,	no	user	code	is	returned:

{

		"access_token":	"1/fFAGRNJru1FTz70BzhT3Zg",

		"expires_in":	3920,

		"token_type":	"Bearer"

Auth	operations

10

}

Response	description:

Param Desc

access_token access	token	provided	by	Viafirma	Fortress

expires_in life	time	of	access_token	(in	seconds).	On	batch	signatures	processes	this	param	is	null;
batch	procedures	require		scope		=		certificate		and		signatures		=		"*"	

token_type Type	of	returned	token,	constant	value:		Bearer	

user_code user	code	in	Viafirma	Fortress,	for	example,	for	example,	citizen-id,	passport-id,	etc.

certificate If		scope		=		certificate		certificate	info	will	be	returned	in	this	field	(null	in	other	cases).

Accessing	the	APIs

Some	API	REST	services	related	to	user	profile	/	certificates	can	be	invoked	using	a	valid		access_token	.	Depending	on
the	provided		scope		during	the	authorization	phase,	some	API	services	can	be	called:

SCOPE	=	profile
SCOPE	=	certificate	or	certificates

for	application	/	client	methods:

signing	documents

Auth	operations

11

User	authentication	and	authorization	of	signature
operations
The	process	of	authentication	and	authorization	of	signature	operations	for	a	user	requires	the	following	steps:

Client	system	authentication.
Signature	request
Authentication	and	authorization	of	the	request
Execution	of	the	signature.

A	continuación	se	describen	los	siguientes	apartados	del	proceso.

Client	system	authentication
To	perform	signature	operations	provided	by	Viafirma	Fortress	it	is	necessary	to	obtain	a	token	associated	with	the
client.

To	do	this,	Viafirma	Fortress	offers	the	following	Rest	method,	available	at:

https://fortress.viafirma.com/fortress/oauth2/v1/token

This	URL	receives	a	series	of	parameters,	which	configure	and	prepare	the	signature	request	made	by	a	client:

https://fortress.viafirma.com/fortress/oauth2/v1/token?

scope=client&

redirect_uri={url_de	retorno_definido_en_viafirma_fortress}&

client_id={codigo_del_cliente_definido_en_viafirma_fortress}&

client_secret={clave_del_cliente_definido_en_viafirma_fortress}&

grant_type=client_credentials

Parameter Value Description

scope client For	services	associated	with	signing	documents.

redirect_uri URL It	must	match	one	of	the	return	URLs	defined	in	Viafirma
Fortress

client_id Client	ID	defined	in	Viafirma
Fortress Identify	the	client	application	that	made	the	request

client_secret Customer	key	defined	in
Viafirma	Fortress

Allows	you	to	validate	the	client	application	that	made	the
request

grant_type client_credentials Indicates	that	the	client	requests	access	to	protected
resources	under	his	control

As	a	certificateRequestEntity,	Viafirma	Fortress	will	return	an	object	in		application	/	json		format	with	the	information	of
the	access	token	associated	with	the	client.

{

		"access_token":	"1479cc2592a84cfb83c01402df613d01",

		"token_type":	"Bearer",

		"expires_in":	3599

}

Signature	request

Signature	operations

12

With	the	client	system	token	obtained	from	the	previous	call,	the	client	will	call	the	Viafirma	Fortress	method	/	signature,
providing	the	information	to	be	digitally	signed	by	the	user.	In	the	next	section	you	will	find	the	detailed	description	of	the
signature	method,	as	well	as	the	parameters	it	receives.	Once	the	information	is	processed	Viafirma	Fortress	will	return
to	the	client	system	an	object	in		application	/	json		format,	composed	of	an	authorization	code	and	an	execution	code

{

		"authCode":	"124d6a9b5eaa470396a4db454780f6da",

		"exeCode":	"96f1e73e5718438c8683846a2479d198"

}

Authentication	and	authorization	of	the	request.
Once	the	document	or	the	documents	to	be	signed	have	been	prepared,	it	will	be	necessary	to	authenticate	the	user	to
be	able	to	make	the	signature.

As	in	the	process	of	authentication	and	authorization	in	query	operations,	it	is	necessary	that	it	be	authenticated	with	1	or
2	authentication	factors.	Depending	on	the	configuration	associated	with	the	Viafirma	Fortress	client,	Viafirma	Fortress
may	request	an	authentication	factor	or,	on	the	contrary,	Fortress	will	force	the	user	to	authenticate	against	two
authentication	factors	of	different	categories.	The	categories	will	be:

Something	I	know	->	Knowledge
Something	I	have	->	Possession
Something	that	I	am	->	Inherence

To	perform	a	user's	authentication	process,	Viafirma	Fortress	offers	a	web	interface,	available	at:

https://fortress.viafirma.com/fortress/oauth2/v1/auth

This	URL	receives	a	series	of	parameters,	which	configure	and	prepare	the	authentication	and	authorization	request	in
the	signing	process:

https://fortress.viafirma.com/fortress/oauth2/v1/auth?

signature_code={codigo_autorización_de_la_firma}

scope=signature&

client_id={codigo_del_cliente_definido_en_viafirma_fortress}&

redirect_uri={url_de	retorno_definido_en_viafirma_fortress}

Parameter Value Description

signature_code Signature	Authorization	Code Authorization	code	for	the	signature	operation

scope signature signature	:	For	services	associated	with	the	signing	of
documents

redirect_uri URL It	must	match	one	of	the	return	URLs	defined	in	Viafirma
Fortress

client_id Client	ID	defined	in	Viafirma
Fortress Identify	the	client	application	that	made	the	request

Request	user	to	sign

If	the	client	did	not	report	the	user_code	field	associated	with	the	user,	in	the	`application	/	json`	object	that	he	used	as	

a	parameter	in	the`	/	signature`	method	call,	Viafirma	Fortress	will	request	the	user	code	that	wishes	to	make	the	signature.

Signature	operations

13

When	the	user	enters	his	user	code	in	Fortress,	Viafirma	Fortress	will	validate	it	and	show	him	the	set	of	authentication
factors	in	which	the	user	is	enrolled.

Viafirma	Fortress	will	store	the	user	once	validated	by	at	least	one	Authentication	Factor	in	the	browser's	cookies,	so	as
not	to	have	to	repeat	the	process	each	time	the	user	tries	to	interact	with	Viafirma	Fortress.

Authentication	Factors

Viafirma	Fortress,	through	the	different	authentication	factors	in	which	the	user	is	enrolled,	must	ensure	the	identity	of
the	user.

Active	authentication	factors	can	be	determined	during	the	installation	of	Viafirma	Fortress,	by	modifying	the	values	of	the
corresponding	attributes,	which	follow	a	pattern	of	type		fortress.idp.	{Code_of_idp}	.active		(see	installation	manual).

Signature	operations

14

During	the	entire	document	signing	process,	the	user	can	see	the	number	of	documents	to	be	signed	as	well	as
download	them.

Regardless	of	the	authentication	factors	selected,	in	case	of	successful	authentication,	it	is	understood	that	the	user
has	authorized	the	operation	and	control	will	be	returned	to	the	client	application,	redirecting	to	the	return	URL	specified
in	the	request	configuration.

Authentication	factor:	Email

A	unique	code	is	sent	to	the	user's	email,	which	you	must	enter	on	the	authorization	screen	once	you	receive	it.

Signature	operations

15

Authentication	factor:	SMS

An	SMS	with	a	unique	code	is	sent	to	the	user's	mobile	phone,	which	must	be	entered	on	the	authorization	screen	once
it	is	received.

Authentication	factor:	OTP

It	is	necessary	to	have	the	app	(Android	/	IOS)	that	will	generate	a	code,	updated	every	so	often.	The	user	must	enter	the
code	in	the	authorization	screen	before	the	code	expires.

Signature	operations

16

Authentication	factor:	LDAP

The	user's	LDAP	password	will	be	requested	(the	configuration	of	the	LDAP	service	is	done	during	the	Viafirma	Fortress
installation).

Authentication	factor:	PIN

The	PIN	code	of	the	user	stored	in	Viafirma	Fortress	will	be	requested.

Signature	operations

17

Authentication	factor:	Password

The	user's	password	will	be	requested	in	Fortress.

Select	the	certificate	to	be	used	in	the	signature

Once	the	user	has	successfully	authenticated	using	any	of	the	available	authentication	factors,	the	list	of	delegated
certificates	and	certificates	of	the	user	(guarded	by	Viafirma	Fortress)	will	be	displayed.	Once	the	user	has	selected	one
of	their	certificates,	control	will	be	returned	to	the	client	application.

Signature	operations

18

Execution	of	the	signature

Finally,	when	the	user	selects	a	certificate,	Viafirma	Fortress	returns	the	following	information	to	the	client	system,	to
execute	the	signature:

the	selected	certificate

execution	status

and	the	date	of	execution

Signature	operations

19

Unattended	signature	operations
The	process	to	perform	unattended	signature	operations,	requires	the	following	steps:

Client	system	authentication.
In	the	Viafirma	Fortress	backend,	it	is	necessary	to	upload	the	certificate	that	will	be	used	in	the	unattended
signature,	associated	with	the	client	system	or	the	group.
Signature	request
Execution	of	the	signature.

The	following	sections	of	the	process	are	described	below.

Client	system	authentication
To	perform	signature	operations	provided	by	Viafirma	Fortress	it	is	necessary	to	obtain	a	token	associated	with	the
client.

To	do	this,	Viafirma	Fortress	offers	the	following	Rest	method,	available	at:

{viafirma_fortress_url}/oauth2/v1/token

Where:

	viafirma_fortress_url	:	Base	URL	of	the	Viafirma	Fortress	implementation,	for	example
https://sandbox.viafirma.com/fortress	or	https://fortress.viafirma.com/fortress

This	URL	receives	a	series	of	parameters,	which	configure	and	prepare	the	signature	request	made	by	a	client:

{viafirma_fortress_url}/oauth2/v1/token?

scope=client&

redirect_uri={url_de	retorno_definido_en_viafirma_fortress}&

client_id={codigo_del_cliente_definido_en_viafirma_fortress}&

client_secret={clave_del_cliente_definido_en_viafirma_fortress}&

grant_type=client_credentials

Parameter Value Description

scope client For	services	associated	with	signing	documents.

redirect_uri URL It	must	match	one	of	the	return	URLs	defined	in	Viafirma
Fortress

client_id Client	ID	defined	in	Viafirma
Fortress Identify	the	client	application	that	made	the	request

client_secret Customer	key	defined	in
Viafirma	Fortress

allows	you	to	validate	the	client	application	that	made	the
request

grant_type client_credentials Indicates	that	the	client	requests	access	to	protected
resources	under	his	control

As	a	certificateRequestEntity,	Viafirma	Fortress	will	return	an	object	in		application	/	json		format	with	the	information	of
the	access	token	associated	with	the	client.

{

		"access_token":	"1479cc2592a84cfb83c01402df613d01",

		"token_type":	"Bearer",

		"expires_in":	3599

}

Unattended	signature	operations

20

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

Host	the	certificate	that	will	be	used	in	the	process,	in	Viafirma
Fortress
Viafirma	Fortress,	you	must	manage	the	certificates	that	will	be	used	in	the	unattended	signature	process	at	the	Client
System	level	or	at	the	Group	level.	To	manage	the	certificates	at	the	client	or	group	level,	it	will	be	necessary:

Access	the	backend	with	a	global	or	group	administrator	user
Access	the	administration	of	your	client	systems	or	groups
Access	the	detail	of	the	client	system	or	the	group	that	will	host	the	certificate	used	in	the	unattended	signing
process
In	the	configuration	section,	clic	on	the	Certificates	tab	to	check	the	available	certificates
Press	import	to	upload	a	certificate	in	.p12	format.
If	the	platform	is	configured	to	request	certificates	from	an	embedded	registration	entity,	you	can	request	a	new
certificate.

Note:

The	value	indicated	in	the	"Code"	column	is	important,	this	value	will	be	used	in	the	request	for	an	unattended	signature.

Signature	Request
With	the	client	system	token	obtained	from	the	previous	call,	the	client	will	call	the	Viafirma	Fortress	method	/	signature,
providing	the	information	to	be	digitally	signed	unattended.

In	the	next	section	you	will	find	the	detailed	description	of	the	signature	method,	as	well	as	the	parameters	it	receives.

Once	the	information	is	processed	Viafirma	Fortress	will	return	to	the	client	system	an	object	in		application	/	json	
format,	composed	of	an	authorization	code	and	an	execution	code:

{

		"authCode":	"124d6a9b5eaa470396a4db454780f6da",

		"exeCode":	"96f1e73e5718438c8683846a2479d198"

}

Execution	of	the	signature

Finally,	when	the	user	selects	a	certificate,	Viafirma	Fortress	returns	the	following	information	to	the	client	system,	to
execute	the	signature:

the	selected	certificate
execution	status
and	the	date	of	execution

Unattended	signature	operations

21

Unattended	signature	operations

22

Signature	extension	operations
The	signature	extension	operations	process	for	a	user	requires	the	following	steps:

Client	system	authentication.
Make	the	signature	extension	request

The	following	sections	of	the	process	are	described	below.

Client	system	authentication
To	perform	signature	operations	provided	by	Viafirma	Fortress,	it	is	necessary	to	obtain	a	token	associated	with	the
client.

To	do	this,	Viafirma	Fortress	offers	the	following	Rest	method	,	available	at:

{viafirma_fortress_url}/oauth2/v1/token

Where:

	viafirma_fortress_url	:	Base	URL	of	the	Viafirma	Fortress	implementation,	for	example
https://sandbox.viafirma.com/fortress	or	https://fortress.viafirma.com/fortress

This	URL	receives	a	series	of	parameters,	which	configure	and	prepare	the	Signature	request	made	by	a	client:

{viafirma_fortress_url}/oauth2/v1/token?

scope	=	client&

redirect_uri={	url_returned_defined_in_viafirma_fortress}&

client_id={client_code_defined_in_viafirma_fortress}&

client_secret={client_key_defined_in_viafirma_fortress}&

grant_type=client_credentials

Parameter Value Description

scope client For	services	associated	with	document	signing.

redirect_uri URL It	must	match	one	of	the	return	URLs	defined	in	Viafirma	Fortress

client_id Client	ID It	is	defined	in	Viafirma	Fortress	and	identifies	the	client	application	that	is
making	the	request

client_secret Client	key Allows	the	client	application	to	validate	that	the	request	has	been	made

grant_type client_credentials Indicates	that	the	client	requests	access	to	protected	resources	under	its
control

As	a	result,	Viafirma	Fortress	will	return	an	object	in		application	/	json		format	with	the	access	token	information
associated	with	the	client.

{

				"access_token":	"1479cc2592a84cfb83c01402df613d01",

				"token_type":	"Bearer",

				"expires_in":	3599

}

Signature	extension	request

Extend	signature	operations

23

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

With	the	client	system	token	obtained	from	the	previous	call,	the	client	will	call	the	/extend	method	of	Viafirma	Fortress,
providing	it	with	the	necessary	information	to	extend	the	signature	of	a	document	previously	digitally	signed	by	the	user.

In	the	next	section	you	will	find	a	detailed	description	of	the	extend	method,	as	well	as	the	parameters	it	receives.

Once	the	information	has	been	processed,	Viafirma	Fortress	will	return	to	the	client	system	an	object	in		application/json	
format	,	composed	of	a	reference	and	the	base	64	bytes	of	the	signed	document.

{

"ref":	"d8e3d98dc20e46188fd067df28048934",

"bytesB64":	"MIMBKM8GCSqGSIb3DQEHAqCDASi/MIMBKLoCAQUxDzANBglghkgBZQMEAgEFADCC1QsGCSqGSIb3DQEHAaCC1PwEgtT4JVBERi0xLjMKJcTl8uXrp

..."

}

Extend	signature	operations

24

Viafirma	Fortress	API
Viafirma	Fortress	basically	manages	users	(identities)	information	and	certificates	controlled	by	these	users.	The
Fortress	API	exposes	this	information	to	third	party	application.	To	access	these	services,	an	Access	Token	is	required
to	authorize	API	requests,	as	explained	at	the	following	link:

get	Access	Token

Postman	Collections

If	you	already	have	access	credentials	to	our	Sanbdox	environment,	you	can	use	the	following	postman	resources	to	test
the	API.	These	collections	include	the	basic	use	cases	with	which	you	can	start	your	integration.

Sandbox	configuration	environment

Signature	Operations

Postman	Fortress	Signature	API	Collection

Authentication	operations

Postman	Fortress	User	Authentication	API	Collection

API

25

Monitoring	API

Monitoring	connection	to	Viafirma	Fortress
This	method	we	can	validate	the	communication	with	Viafirma	Fortress	instance.

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/ping	

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress

Example:

Method		GET	
URL:		{viafirma_fortress_url}/api/v1/ping	

Service	response

This	service	will	return:		200	OK		if	there	is	communication	with	the	Viafirma	Fortress	instance.

Service	errors

If	there	is	no	connection	to	the	Viafirma	Fortress	instance,	a	communication	error	will	occur.

Error
code Error

not_found If	there	is	communication	with	the	instance,	but	this	version	of	Viafirma	Fortress	has	not
implemented	this	method.(HTTP	Status:	404)

Ping

26

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

User	profile	API
An	Access	Token	is	required	to	authorize	all	API	requests,	as	explained	at	the	following	link:

get	Access	Token

GET	USER	PROFILE
Get	user	profile	and	active	certificates.

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/user/{user_code}	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	user_code	:	user	unique	identifier,	for	example		11111111H	

Sample	Request

Method:		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/user/11111111H	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	Response

Response	in		application/json		format:

{

		"code":	"11111111H",

		"name":	"JHON	DOE",

		"email":	"jhondoe@example.com",

		"mobile":	"+34666666666",

		"lastAccess":	1501590523833,

		"role":	"ROLE_USER",

		"certificates":	[

				{

						"code":	"226ffa94-1f0f-4c43-98aa-c7c8e4ccf657",

						"name":	"Sample	Certificate	01",

						"description":	"Lorem	ipsum	dolor	sit	amet",

						"dateIssued":	1492432672000,

						"dateExpired":	1555504674000,

						"serialNumber":	"1250978750360690486",

						"issuer":	"Certificate	Authority	info",

						"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES"

				},

				{

						"code":	"014e684e-4751-4850-853c-c90802385a78",

						"name":	"Sample	Certificate	02",

						"description":	"Lorem	ipsum	dolor	sit	amet",

						"dateIssued":	1492432671000,

User	profile

27

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

						"dateExpired":	1555504674000,

						"serialNumber":	"1250978750360690486",

						"issuer":	"Certificate	Authority	info",

						"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES"

				}

]

}

Where:

Param Type Desc

code string Usercode

name string fullname

email string email

mobile string mobile	number	with	country	prefix,	Ex.	+34600100200

lastAccess long datetime	of	last	login

role string role

certificates array list	of	digital	certificates

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

user_not_found incorrect	or	inactive	user	(HTTP	Status:	404)

GET	USER	STATUS
This	service	is	used	to	retrieve	information	about	functional	operations	that	are	allowed	for	a	user	(for	instance,	if	user
can	sign,	has	any	active	digital	certificate,	etc.).

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/user/{user_code}/status	

Security:

User	profile

28

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	user_code	:	user	unique	identifier,	for	example		11111111H	

Note:	a	user	is	identified	in	the	platform	by	a	unique	code	such	as	id-citizen,	email,	passport-id,	etc.

Sample	Request

Method:		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/user/11111111H/status	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	response

Response	in		application/json		format:

{

		"sign":	true,

		"auth":	true

}

Where:

Param Type Desc

sign boolean true	if	user	is	allowed	to	sign	with	certificate

auth boolean true	if	user	is	allowed	to	authenticate	with	certificate

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

user_not_found incorrect	or	inactive	user	(HTTP	Status:	404)

User	profile

29

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

User	profile

30

User	and	client	digital	certificates	API
An	Access	Token	is	required	to	authorize	all	API	requests,	as	explained	at	the	following	link:

get	Access	Token

Retrieve	all	certificates	belonging	to	a	user
Returns	a	list	of	active	digital	certificates	for	a	specific	user.

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/user/{user_code}/certificate	

Security:

Authorization:	Bearer	{access_token}

where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	user_code	:	user	unique	identifier,	for	example		11111111H	

Note:	a	user	is	identified	in	the	platform	by	a	unique	code	such	as	id-citizen,	email,	passport-id,	etc.

Sample	Request

Method		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/user/sample_user/certificate	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	Response

Response	in		application/json		format:

[

		{

				"code":	"226ffa94-1f0f-4c43-98aa-c7c8e4ccf657",

				"name":	"Sample	Certificate	01",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1492432672000,

				"dateExpired":	1555504674000,

				"serialNumber":	"1250978750360690486",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIGsTCCBZmgAwIBAgIQESeGCdXLzw9XurB4LNd0BjANBgkq..."

		},

		{

				"code":	"014e684e-4751-4850-853c-c90802385a78",

				"name":	"Sample	Certificate	02",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1492517893000,

				"dateExpired":	1555504678000,

				"serialNumber":	"4096319273351924161",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

Certificate

31

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

				"pem":	"MIIFTDCCBDSgAwIBAgIIHZer06chPs4wDQYJKoZIhvcNAQEFB..."

		},

		{

				"code":	"024v694e-4899-4876-863f-j91872310e70",

				"name":	"Sample	Certificate	03",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1493432678000,

				"dateExpired":	1556504679000,

				"serialNumber":	"2046339272352914110",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIGnTCCBYWgAwIBAgIQTuF2zDNK0C5XVqAhuNMuHjANBgkqhk..."

		}

]

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

pem string Public	key	in	PEM	format

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string error	description

error_description string error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

user_not_found incorrect	or	inactive	user	(HTTP	Status:	404)

Get	information	about	a	specific	user	certificate
Available	only	for	active	certificates.

Certificate

32

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/user/{user_code}/certificate/{certificate_code}	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	user_code	:	user	unique	identifier,	for	example		11111111H	
	certificate_code	:	unique	code	of	the	digital	certificate	requested

Sample	Request

Method:		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/user/sample_user/certificate/226ffa94-1f0f-4c43-98aa-c7c8e4ccf657	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	Response

Response	in		application/json		format:

[

		{

				"code":	"226ffa94-1f0f-4c43-98aa-c7c8e4ccf657",

				"name":	"Sample	Certificate	01",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1492432672000,

				"dateExpired":	1555504674000,

				"serialNumber":	"1250978750360690486",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIGsTCCBZmgAwIBAgIQESeGCdXLzw9XurB4LNd0BjANBgkq..."

		}

]

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

pem string Public	key	in	PEM	format

Certificate

33

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

API	errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string error	description

error_description string error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

user_not_found incorrect	or	inactive	user	(HTTP	Status:	404)

certificate_not_found incorrect	or	inactive	digital	certificate	(HTTP	Status:	404)

Retrieve	all	certificates	belonging	to	a	system	client
Returns	a	list	of	active	digital	certificates	for	a	specific	system	client.

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/client/{client_id}/certificate	

Security:

Authorization:	Bearer	{access_token}

where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	client_id	:	System	client	unique	identifier,	for	example		sample_client	

Sample	Request

Method		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/client/sample_user/certificate	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	Response

Response	in		application/json		format:

[

		{

				"code":	"226ffa94-1f0f-4c43-98aa-c7c8e4ccf657",

				"name":	"Sample	Certificate	01",

Certificate

34

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1492432672000,

				"dateExpired":	1555504674000,

				"serialNumber":	"1250978750360690486",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIGsTCCBZmgAwIBAgIQESeGCdXLzw9XurB4LNd0BjANBgkq...",

				"delegated":	false,

				"level":	"MEDIUM"

		},

		{

				"code":	"014e684e-4751-4850-853c-c90802385a78",

				"name":	"Sample	Certificate	02",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1492517893000,

				"dateExpired":	1555504678000,

				"serialNumber":	"4096319273351924161",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIFTDCCBDSgAwIBAgIIHZer06chPs4wDQYJKoZIhvcNAQEFB...",

				"delegated":	false,

				"level":	"MEDIUM"

		},

		{

				"code":	"024v694e-4899-4876-863f-j91872310e70",

				"name":	"Sample	Certificate	03",

				"description":	"Lorem	ipsum	dolor	sit	amet",

				"dateIssued":	1493432678000,

				"dateExpired":	1556504679000,

				"serialNumber":	"2046339272352914110",

				"issuer":	"Certificate	Authority	info",

				"subject":	"SERIALNUMBER=11111111H,	GIVENNAME=JHON,	SURNAME=DOE,	C=ES",

				"pem":	"MIIGnTCCBYWgAwIBAgIQTuF2zDNK0C5XVqAhuNMuHjANBgkqhk...",

				"delegated":	false,

				"level":	"MEDIUM"

		}

]

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

issuerMap object Issuer	attributes

subjectMap object Subject	attributes

delegated boolean Delegated	certificate	indicator

pem string Public	key	in	PEM	format

level string Certificate	protection	level

API	Errors

Certificate

35

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string error	description

error_description string error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

client_not_found incorrect	or	inactive	client	(HTTP	Status:	404)

Get	information	about	a	specific	client	certificate
Available	only	for	active	certificates.

REST	service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/client/{client_id}/certificate/{certificate_code}	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	client_id	:	client	unique	identifier
	certificate_code	:	unique	code	of	the	digital	certificate	requested

Sample	Request

Method:		GET	
URL:		https://fortress.viafirma.com/fortress/api/v1/client/sample_client/certificate/226ffa94-1f0f-4c43-98aa-c7c8e4ccf657	
Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Sample	Response

Response	in		application/json		format:

{

		"code":	"08d87ff2ed124a8bb7b323cbfb889e9e",

		"dateIssued":	1555495728000,

		"dateExpired":	1618567728000,

		"serialNumber":	"228897951488527728794",

		"issuer":	"C=DO,	L=WWW.AVANSI.COM.DO,	O=AVANSI	S.R.L.	-	RNC	130222509,	CN=TESTAVANSI	CERTIFICADOS	DIGITALES	",

Certificate

36

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

		"subject":	"OID.1.3.6.1.4.1.27395.8.1=CERTIFICADO	DE	PERSONA	INDIVIDUAL,	CN=LUCAS	MORA	PRIETO,	SERIALNUMBER	=	94967442	M,	GI

VENNAME	=	LUCAS,	SURNAME	=	MORA	PRIETO,	C	=	DO	",

		"issuerMap":	{

				"C":	"DO",

				"CN":	"TEST	AVANSI	CERTIFICADOS	DIGITALES",

				"L":	"WWW.AVANSI.COM.DO",

				"O":	"AVANSI	S.R.L.	-	RNC	130222509"

		},

		"subjectMap":	{

				"SURNAME":	"MORA	PRIETO",

				"C":	"DO",

				"SERIALNUMBER":	"94967442M",

				"1.3.6.1.4.1.27395.8.1":	"CERTIFICADO	DE	PERSONA	INDIVIDUAL",

				"CN":	"LUCAS	MORA	PRIETO",

				"GIVENNAME":	"LUCAS"

		},

		"pem":	"MIIFWjCCBEKgAwIBAgI...",

		"delegated":	false,

		"level":	"MEDIUM"

}

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

issuerMap object Issuer	attributes

subjectMap object Subject	attributes

delegated boolean Delegated	certificate	indicator

pem string Public	key	in	PEM	format

level string Certificate	protection	level

API	errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string error	description

error_description string error	description

Errors:

Certificate

37

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

client_not_found incorrect	or	inactive	client	(HTTP	Status:	404)

certificate_not_found incorrect	or	inactive	digital	certificate	(HTTP	Status:	404)

Signing	of	new	client	certificates
This	service	allows	registering	a	new	certificate	and	associating	it	with	a	client	system.

REST	service	specs:

Method:		POST	
URL:	`{viafirma_fortress_url}/api/v1/client/{client_id}/certificate

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	client_id	:	client	unique	identifier

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Example:

Method		POST	
URL:		https://fortress.viafirma.com/fortress/api/v1/client/sample_client/certificate		Security	Header:		Authorization:	Bearer
0b79bab50daca910b000d4f1a2b675d604257e42	

Service	parameters

This	service	receives	by	parameters	the	configuration	of	the	certificate	to	be	signed:

The	parameters	that	are	received	(in		application	/	json		format)	have	the	following	form:

{

		"keystore":	"MIIZXwIBAzCCGRgGCSq...",

		"password":	"123456"

}

Where:

Parameter Type Description

code string [OPTIONAL]	Code	to	associate	the	certificate,	if	not	reported	Fortress	generates	one

description string [OPTIONAL]	Description	associated	with	the	certificate

keystore string Content	of	keystore	in	PKCS#12	format	encoded	in	Base64

password string Password	of	the	keystore

alias string [OPTIONAL]	Alias	of	the	certificate	within	the	keystore,	only	required	if	the	keystore
stores	more	than	one	certificate

Service	response

The	response	of	this	service	will	be	given	(in		application	/	json		format)	with	the	certificate	data	in	the	same	format	as
the	query	service	of	a	certificate	of	a	client	system.

Certificate

38

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

{

		"code":	"08d87ff2ed124a8bb7b323cbfb889e9e",

		"dateIssued":	1555495728000,

		"dateExpired":	1618567728000,

		"serialNumber":	"228897951488527728794",

		"issuer":	"C=DO,	L=WWW.AVANSI.COM.DO,	O=AVANSI	S.R.L.	-	RNC	130222509,	CN=TESTAVANSI	CERTIFICADOS	DIGITALES	",

		"subject":	"OID.1.3.6.1.4.1.27395.8.1=CERTIFICADO	DE	PERSONA	INDIVIDUAL,	CN=LUCAS	MORA	PRIETO,	SERIALNUMBER	=	94967442	M,	GI

VENNAME	=	LUCAS,	SURNAME	=	MORA	PRIETO,	C	=	DO	",

		"issuerMap":	{

				"C":	"DO",

				"CN":	"TEST	AVANSI	CERTIFICADOS	DIGITALES",

				"L":	"WWW.AVANSI.COM.DO",

				"O":	"AVANSI	S.R.L.	-	RNC	130222509"

		},

		"subjectMap":	{

				"SURNAME":	"MORA	PRIETO",

				"C":	"DO",

				"SERIALNUMBER":	"94967442M",

				"1.3.6.1.4.1.27395.8.1":	"CERTIFICADO	DE	PERSONA	INDIVIDUAL",

				"CN":	"LUCAS	MORA	PRIETO",

				"GIVENNAME":	"LUCAS"

		},

		"pem":	"MIIFWjCCBEKgAwIBAgI...",

		"delegated":	false,

		"level":	"MEDIUM"

}

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

issuerMap object Issuer	attributes

subjectMap object Subject	attributes

delegated boolean Delegated	certificate	indicator

pem string Public	key	in	PEM	format

level string Certificate	protection	level

API	errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

Certificate

39

error string error	description

error_description string error	description

Errors:

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

client_not_found incorrect	or	inactive	client	(HTTP	Status:	404)

invalid_keystore The	keystore	is	not	in	PKCS#12	format	or	the	password	is	incorrect	(HTTP	Status:
404)

invalid_alias The	certificate	with	the	specified	alias	was	not	found	within	the	keystore,	or	there
are	several	certificates	and	the	alias	has	not	been	specified	(HTTP	Status:	404)

certificate_already_exists The	certificate	is	already	associated	with	the	client	system	(HTTP	Status:	404)

expired_certificate The	certificate	has	expired	(HTTP	Status:	404)

revoked_certificate The	certificate	is	revoked	(HTTP	Status:	404)

not_trusted_certificate Some	of	the	certificates	in	the	chain	can	not	be	found	in	the	trust	store	(HTTP
Status:	404)

certificate_validation An	error	occurred	while	validating	the	certificate	(HTTP	Status:	404)

Deleting	client	certificates
This	service	allows	you	to	eliminate	certificates	associated	with	a	client	system.

REST	service	specs:

Method:		DELETE	
URL:	`{viafirma_fortress_url}/api/v1/client/{client_id}/certificate/{certificate_code}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	client_id	:	client	unique	identifier
	certificate_code	:	unique	code	of	the	digital	certificate	requested
Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Example:

Method		DELETE	
URL:		https://fortress.viafirma.com/fortress/api/v1/client/sample_client/certificate/08d87ff2ed124a8bb7b323cbfb889e9e	Security
Header:	Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42`

Service	response

The	response	of	this	service	will	be	given	(in		application	/	json		format)	with	the	certificate	data	in	the	same	format	as
the	query	service	of	a	certificate	of	a	client	system.

{

		"code":	"08d87ff2ed124a8bb7b323cbfb889e9e",

		"dateIssued":	1555495728000,

		"dateExpired":	1618567728000,

		"serialNumber":	"228897951488527728794",

		"issuer":	"C=DO,	L=WWW.AVANSI.COM.DO,	O=AVANSI	S.R.L.	-	RNC	130222509,	CN=TESTAVANSI	CERTIFICADOS	DIGITALES	",

Certificate

40

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

		"subject":	"OID.1.3.6.1.4.1.27395.8.1=CERTIFICADO	DE	PERSONA	INDIVIDUAL,	CN=LUCAS	MORA	PRIETO,	SERIALNUMBER	=	94967442	M,	GI

VENNAME	=	LUCAS,	SURNAME	=	MORA	PRIETO,	C	=	DO	",

		"issuerMap":	{

				"C":	"DO",

				"CN":	"TEST	AVANSI	CERTIFICADOS	DIGITALES",

				"L":	"WWW.AVANSI.COM.DO",

				"O":	"AVANSI	S.R.L.	-	RNC	130222509"

		},

		"subjectMap":	{

				"SURNAME":	"MORA	PRIETO",

				"C":	"DO",

				"SERIALNUMBER":	"94967442M",

				"1.3.6.1.4.1.27395.8.1":	"CERTIFICADO	DE	PERSONA	INDIVIDUAL",

				"CN":	"LUCAS	MORA	PRIETO",

				"GIVENNAME":	"LUCAS"

		},

		"pem":	"MIIFWjCCBEKgAwIBAgI...",

		"delegated":	false,

		"level":	"MEDIUM"

}

where:

Param Type Desc

code string Digital	certificate	unique	code

name string Name

description string Description

dateIssued string Date	issued	in	milliseconds	format

dateExpired string Date	expired	in	milliseconds	format

serialNumber string Serial	number

issuer string Issuer	(Certificate	Authority)

subject string Subject

issuerMap object Issuer	attributes

subjectMap object Subject	attributes

delegated boolean Delegated	certificate	indicator

pem string Public	key	in	PEM	format

level string Certificate	protection	level

API	errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string error	description

error_description string error	description

Errors:

Certificate

41

Error	code Error

invalid_token invalid		access_token		(HTTP	Status:	401)

client_not_found incorrect	or	inactive	client	(HTTP	Status:	404)

certificate_not_found incorrect	or	inactive	digital	certificate	(HTTP	Status:	404)

Certificate

42

Signing	API
An	Access	Token	is	required	to	authorize	all	API	requests,	as	explained	at	the	following	link:

get	Access	Token

DIGITAL	SIGNATURE	REQUEST

REST	service	specs:

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress

Sample	Request

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Request	Params

The	request	body	contains	information	such	as	signature	format,	document	to	be	signed,	etc.

	application/json		format	is	used:

{

		"signatureConfigurations":	[

				{

						"ref":	"#1",

						"document":	{

								"bytesB64":	"JVBERi0xLjMKJcTl8uXrp/Og0MTGCjQ...",

								"name":	"contract.pdf"

						},

						"signatureType":	"PADES_LTA",

						"signatureAlgorithm":	"RSA_SHA256",

						"packaging":	"ENVELOPED",

						"reason":	"	test	PAdES	signature	",

						"padesConfiguration":	{

								"stamper":	{

										"csvPath":	"http://<someURL>/v#",

										"logoB64":	"iVBORw0KGgoAAAANSUhEUgAAAWYAAABsCAYAAABZyhj...",

										"page":	1,

										"type":	"QR_BARCODE128",

										"xAxis":	80,

										"yAxis":	700

								}

						}

				}

]

}

Sign

43

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

Note:	params	for		padesConfiguration	,		xadesConfiguration	,		tsa		and		policy		are	described	later.

Where:

Param Type Desc

userCode string
OPTIONAL,	used	to	to	specify	the	signer	user.	If
null,	user	will	be	requested	to	authenticate	before
signing.

certificateCode string

OPTIONAL,	used	to	specify	which	certificate	will
be	used	to	sign.	If	null,	user	will	be	requested	to
select	any	of	the	active	certificates	belonging	to
the	user.

certificatePassword string
OPTIONAL,	used	to	specify	which	certificate
password	will	be	used	to	sign,	this	field	is	only
allowed	for	the	unattended	signature.

multifactorAuth boolean OPTIONAL,	if	true	,	forces	the	use	of	2
authentication	factors.

async string Set	value	to		true		for	asynchronous	execution.

callbackUrl string Fortress	will	do	a	POST	with	the	final	status	to	the
specified	URL	after	a	asynchronous	execution.

certificateFilter string
Attributes	by	which	to	filter	the	certificate.	Enter
which	filters	you	want	the	certificate	to	meet	to	be
used.

signatureConfigurations/document/name string Name	of	the	document	to	be	signed

signatureConfigurations/document/bytesB64 string Document	to	be	signed	(Base64)

signatureConfigurations/document/url string URL	of	document	to	be	signed

signatureConfigurations/signatureType string

Signature	format:	
-		CADES_B	
-		CADES_T	
-		CADES_LT	
-		CADES_LTA	
-		PADES_B	
-		PADES_T	
-		PADES_LT	
-		PADES_LTA	
-		XADES_B		
-		XADES_T		
-		XADES_LT		
-		XADES_LTA		
-		PKCS1	

signatureConfigurations/signatureAlgorithm string

signature	algorithm:	
-		RSA_SHA1	
-		RSA_SHA224	
-		RSA_SHA256	
-		RSA_SHA384	
-		RSA_SHA512	

signatureConfigurations/packaging string

signature	type:	
-		ENVELOPED	
-		ENVELOPING	
-		DETACHED	

signatureConfigurations/reason string OPTIONAL,	signature	reason

signatureConfigurations/location string OPTIONAL,	signature	location

signatureConfigurations/ref string OPTIONAL,	if	present,	his	value	will	be	returned	in
the	signature	certificateRequestEntity.

Sign

44

Si	se	informa	una	URL	y	la	firma	se	realiza	de	forma	asíncrona,	al	finalizar	la	firma	Fortress	realiza	una	petición	POST	a
dicha	URL	con	el	estado	final	de	ejecución.	|

Configuración	de	los	filtros	de	certificados

Esta	configuración	hace	que	a	la	hora	de	firmar,	el	usuario	solo	pueda	firmar	con	los	certificados	que	cumplan	todos
los	requisitos.

{

		"certificateFilter":	{

				"issuer.cn":	[

						"AC	FNMT	Usuarios"

],

				"subject.cn":	[

						"ZAMORANO	DE	EJEMPLO	JOSE	LUIS	-	71121212M"

],

				"subject.serialnumber":	[

								"99999999R",

								"71121212M"

],

				"oid":	[

						"2.5.29.14",

						"2.5.29.15"

]

		}

}

Podemos	filtrar	de	varias	formas.

Parámetro Tipo Descripción

oid List	-
String List	of	oids	that	the	certificate	must	have	to	be	valid

serialnumber List	-
String List	of	serialnumber	that	the	certificate	must	have	to	be	valid

issuer.C
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	CountryName	->	ES

issuer.OU
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	OrganizationalUnit	->	Ceres

issuer.CN
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	CommonName	->	AC	FNMT	Usuarios

issuer.O
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	Organization	->	FNMT-RCM

subject.SURNAME
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	Surname	->	ZAMORANO	DE	EJEMPLO

subject.C
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	CountryName	->	ES

subject.SERIALNUMBER
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	Serial	number	->	IDCES-71121212M

subject.CN
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	CommonName	->	ZAMORANO	DE	EJEMPLO
JOSE	LUIS	-	71121212M

Sign

45

subject.GIVENNAME
Single
list	-
String

(Only	one	is	allowed,	starting	with	version	6.2.5	of	Viafirma	Fortress,	this
restriction	is	removed)	Givenname	->	JOSE	LUIS

PAdES	Configuration

Params	only	applicable	to		signatureType		PAdES	(PAdES	B,	PAdES	T,	PAdES	LT,	PAdES	LTA).

"padesConfiguration":	{

				"stamper":	{	}

}

The	stamper	object	is	optional,	and	it	defines	a	visual	stamp	associated	with	the	signature	PAdES.

{

		"stamper":	{

				"csvPath":	"https://sandbox.viafirma.com/fortress/v#",

				"imageB64":	"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"logoB64":	"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"page":	1,

				"rotation":	"ROTATE_90",

				"textLine1":	"Sample	line	1",

				"textLine2":	"Sample	line	2",

				"textLine3":	"Sample	line	3",

				"type":	"QR_BARCODE128",

				"xAxis":	100,

				"yAxis":	100

		}

}

Param Type Desc

stamper/csvPath string public	URL	for	validating	signed	documents

stamper/xAxis int Stamper	position	on	PDF;	X-coordinates

stamper/yAxis int Stamper	position	on	PDF;	Y-coordinates

stamper/width int OPTIONAL.	Stamper	width

stamper/height int OPTIONAL.	Stamper	height

stamper/imageB64 string Stamper	watermark	(Base64)

stamper/imageUrl string Stamper	watermark	(URL)

stamper/logoB64 string Logo	to	be	printed	(Base64)

stamper/page int Page	number	where	stamper	will	be	embedded.	Value		-1		for	last	page,		0	
for	all	pages.

stamper/rotation string
OPTIONAL.	Rotation	degrees:	
-		ROTATE_90	
-		ROTATE_270	

stamper/textLine1 string OPTIONAL.	Text	included	in	the	stamper	(line	1).

stamper/textLine2 string OPTIONAL.	Text	included	in	the	stamper	(line	2).

stamper/textLine3 string OPTIONAL.	Text	included	in	the	stamper	(line	3).

Stamper	type:	
-		PDF417	
-		QR_BARCODE128	
-		QR	
-		BARCODE128	
-		IMAGE	
-		TEXT	

Sign

46

stamper/type string -		QR_NO_TEXT	
-		QR_SCALED	
-		CUSTOM_TEXT	
-		QR_REDUCED	
-		CSV	
-		CSV_QR	
-		IMAGE_TEXT	
-		DEFAULT	

stamper/timeZoneId string Set	the	Time	Zone.	for	stamper	date	to	be	printed

XAdES	Configuration

Params	only	applicable	to		signatureType		XAdES	(XAdES	B,	XAdES	T,	XAdES	LT,	XAdES	LTA)

{

		"signedInfoCanonicalizationMethod":	"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

		"signedPropertiesCanonicalizationMethod":	"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

		"xPathLocationString":	"//book[@id='bk101-1']",

		"claimedSignerRoles":	[

				"role1",

				"role2"

],

		"transformAlgorithms":	[

				"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"

],

		"dssReferenceUri":	"http://dsa-reference.example.com/"

}

Where:

Param Type Desc

signedInfoCanonicalizationMethod string Canonicalization	Method	of	node		signedInfo	

signedPropertiesCanonicalizationMethod string Canonicalization	Method	of	node		signedProperties	

xPathLocationString string XPath	of	ID	node	(XML)	to	be	signed

claimedSignerRoles array Signer	role

transformAlgorithms array

Transform	Algorithm	of	signed	node:	
-		"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"	
-		"http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"	

-		"http://www.w3.org/2001/10/xml-exc-c14n#"	
-		"http://www.w3.org/2001/10/xml-exc-c14n#WithComments"	
-		"http://www.w3.org/2006/12/xml-c14n11"	
-		"http://www.w3.org/2006/12/xml-c14n11#WithComments"	
-		"http://santuario.apache.org/c14n/physical"	

dssReferenceUri string ID	node	(XML)	to	be	signed

TSA	Configuration

TSA	configuration	is	mandatory	if	a	signature	format	that	requires	timestamp	is	used:

{

		"url":	"http://tsa.example.com/",

		"user":	"tsa_user",

		"password":	"tsa_pass",

		"type":	"USER",

		"certificateCode":	"tsa_certificate_code"

}

Param Type Desc

Sign

47

type string Authentication	type:		USER			CERTIFICATE			CERTIFICATE_TLS		of		URL		(if	authentication	is
not	required)

user string OPTIONAL.	Only	when		USER			type		is	used

password string OPTIONAL.	Only	when		USER		or		CERTIFICATE		or		CERTIFICATE_TLS			type		is	used

url string TSA	url

certificateCode string OPTIONAL.	Only	when		CERTIFICATE		or		CERTIFICATE_TLS			type		is	used

POLICIES	Configuration

Only	applicable	to	XAdES	EPES	format;	a	Signature	Policy	can	be	defined:

{

		"id":	"102039485-10283757-102837575",

		"description":	"Sample	policy",

		"digestAlgorithm":	"SHA256",

		"digestValueB64":	"JVBERi0xLjMKJcTl8uXlRU9GC",

		"url"	:	"https://sample/lorem_ipsum_dolor_sit_amet.pdf",

		"contentHintsDescription":	"Lorem	ipsum	dolor	sit	amet",

		"contentHintsType":	"Lorem	ipsum	dolor	sit	amet"

}

<<<<<<<	HEAD	|	Param	|	Type	|	Desc	|	|-----------------------------|----------|---
--|	|	id	|	string	|	Policy	id	|	|	description	|	string	|	Policy	description	|	|
digestAlgorithm	|	string	|	Cipher	Algorithm:	
-		SHA1	
-		SHA224	
-		SHA256	
-		SHA384	
-		SHA512	
-		RIPEMD160	
-		MD2	
-		MD5		|	|	digestValueB64	|	string	|	Policy	Digest	value	(Base64)	|	|	contentHintsDescription	|	string	|	Help	Description	|

|	contentHintsType	|	string	|	Help	content	type	|

Param Type Desc

id string Policy	id

description string Policy	description

digestAlgorithm string

Cipher	Algorithm:	
-		SHA1	
-		SHA224	
-		SHA256	
-		SHA384	
-		SHA512	
-		RIPEMD160	
-		MD2	
-		MD5	

digestValueB64 string Policy	Digest	value	(Base64)

url string The	SpURI	(signature	policy	qualifier).	The	spURI	qualifier	will	contain	a
URL	value	where	a	copy	of	the	signing	policy	document	can	be	obtained.

contentHintsDescription string Help	Description

contentHintsType string Help	content	type

Sign

48

26367b52051e0e30d23d28b90480e0e025b5537d

Response

Response	in		application/json		format:

{

		"authCode":	"1aeb979ddcf247e9ad46ee73e19a326d",

		"exeCode":	"f116305e7f7c44f3a29385028c5374ba"

}

Where:

Param Type Desc

authCode string Authorization	code

exeCode string Execution	code

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error	desc

invalid_request Bad	request.	Incorrect	of	insufficient	request	params.	(HTTP	Status:	400)

invalid_token Invalid		access_token		(HTTP	Status:	401)

user_not_found Incorrect	or	inactive	user	(HTTP	Status:	404)

USER	AUTHENTICATION	AND	CERTIFICATE	SELECTION
Please	review	the	following	User	Authentication	and	Signature	Authorization	section	to	find	more	details.

SIGNATURE	EXECUTION

REST	service	specs:

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature/{executionCode}/execute	

Where:

Sign

49

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	executionCode	:	authorization	code	returned	by	signature	request	method

Sample	Request

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature/f116305e7f7c44f3a29385028c5374ba/execute	

Params

The	request	body	must	be	an	empty	JSON:

{

}

Sample	Response

[

		{

				"bytesB64":	"a910b000d4f1a2b...",

				"signatureCode":	"e2470412-33cc-467a-b357-880fe621920f",

				"mimeType":	"application/pdf",

				"ref":	"#1"

		},

		...

]

Where:

Param Type Desc

bytesB64 string Signed	document	(Base64).	In	case	of	asynchronous	signature	it	will	be	empty	and
the	signed	document	must	be	downloaded	using	the	obtained		signatureCode	.

signatureCode string Signature	ID

mimeType string MIME	type

ref string It	have	the	same	value	if	present	in	the	signature	request

API	Errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error	desc

invalid_request Bad	request.	Incorrect	on	insufficient	params.	(HTTP	Status:	400)

Sign

50

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

invalid_token Invalid		access_token		(HTTP	Status:	401)

user_not_found Invalid	or	inactive	user	(HTTP	Status:	404)

certificate_not_found The	certificate	is	not	inactive	or	authorized,	or	has	not	been	found	(HTTP	Status:	404)

signature_error Problems	found	in	signature	process	(HTTP	Status:	500)

DOWNLOAD	SIGNED	DOCUMENT
Download	signed	document.

Service	specs:

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/signature/download/{signature_code}	

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress
	signature_code	:	signature	code	returned	by	fortress	in	the	signature	execution	service

Sample	Request

Method:		GET	
URL:		{viafirma_fortress_url}/api/v1/signature/download/C0XJ-XOAK-OF1O-TYJ7-S164-3197-3571-05	

Response

Document	in		application/octet-stream		format.

API	Errors

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error	desc

document_not_found Signed	document	ID	not	found	(HTTP	Status:	404).

Sign

51

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

API:	Methods	related	to	unattended	signature	with
certificate

Last	update:	November	13,	2024

The	unattended	signature	process	in	Viafirma	Fortress	will	consist	of	the	processes	of:

Client	authentication
Signature	request
Signature	execution
Getting	the	signed	document/s

In	the	following	sections	we	will	describe	the	methods	available	in	Viafirma	Fortress,	associated	with	signature
operations:

Note:	To	access	these	methods	it	is	necessary	to	have	an	access	token(access_token)	obtained	through	an
authentication	and	authorization	request	with	a	scope		of	type		client		and	a		grant_type	of	type		client_credentials	,	[for
which	you	must	follow	the	steps	indicated	in	this	section	of	the	documentation]	(../../auth/README.md).

Unattended	signature	request

Use	of	the	service

Method:	POST	
URL:		{viafirma_fortress_	url}/api/v1/signature	

Where:

	viafirma_fortress_url	:	Base	URL	of	the	Viafirma	Fortress	implementation,	for	example
https://sandbox.viafirma.com/fortress	or	https://fortress.viafirma.com/fortress

Additionally,	the	access	token	(access_token)	must	be	included	in	the	HTTP	header	of	the	POST	request	as	follows:

Authorization:	Bearer	{access_token}

Example:

Method:	POST	
URL:	{viafirma_fortress_	url}/api/v1/signature	
Request	header	:	Authorization	:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Service	parameters

This	service	receives	through	parameters	the	configuration	of	the	signature	used	for	each	document	to	be	signed,	which
indicates,	among	other	things,	the	type	of	signature	to	be	made,	the	document	to	be	signed...

The	parameters	that	are	received	(in	application/json	format)	have	the	following	form:

{

		"certificateCode":"b8a25e04ab864583bb5ea8d02883e832",

		"signatureConfigurations":	[

		{

				"ref":"#1",

				"document":	{

						"bytesB64":"JVBERi0xLjMKJcTl8uXrp/Og0MTGCjQ...",

Unattended	signature

52

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

						"name":"contract.pdf"

				},

				"signatureType":"PADES_B",

				"signatureAlgorithm":"RSA_SHA256",

				"packaging":"ENVELOPED",

				"padesConfiguration":	{

						"stamper":	{

								"csvPath":"http://localhost:7080/fortress/v#",

								"logoB64":"iVBORw0KGgoAAAANSUhEUgAAAWYAAABsCAYAAABZyhj...",

								"page":	1,

								"type":"QR_BARCODE128",

								"xAxis":	80,

								"yAxis":	700

						}

				}

		}

]

}

Note:	Details	of	the	padesConfiguration	,	xadesConfiguration	,	tsa	and	policy	parameters	are	shown	below.

Where:

Parameter Type Description

certificateCode string

Code	of	the	certificate	to	be	used	in	the	signature,	it
must	be	consulted	in	theCertificatestab	of
theConfigurationsection	of	the	details	of	the	client
system	or	group	where	the	certificate	is	hosted

certificatePassword string Contains	the	password	of	the	certificate,	this	field	is
only	allowed	for	unattended	signing.

async string If	set	to	true	the	call	to	the	signature	execution
service	is	made	asynchronously.

callbackUrl string

If	a	URL	is	reported	and	the	signing	is	performed
asynchronously,	upon	completion	of	the	signing
Fortress	makes	a	POST	request	to	said	URL	with	the
final	execution	status.

signatureConfigurations/document/name string Name	of	the	document	to	sign

signatureConfigurations/document/bytesB64 string Document	to	sign,	encoded	in	Base64

signatureConfigurations/document/url string URL	of	the	document	to	sign

signatureConfigurations/signatureType string

Signature	type.	Available	values:	
-	CADES_B	
-	CADES_T	
-	CADES_LT	
-	CADES_LTA	
-	PADES_B	
-	PADES_T	
-	PADES_LT	
-	PADES_LTA	
-	XADES_B	
-	XADES_T	
-	XADES_LT	
-	XADES_LTA	
-	PKCS1	

signatureConfigurations/signatureAlgorithm string

Algorithm	that	will	be	used	to	encrypt	the	signature.
Available	values:	
-	RSA_SHA1	
-	RSA_SHA224	
-	RSA_SHA256	
-	RSA_SHA384	
-	RSA_SHA512	

Signature	wrapper.	Available	values:	

Unattended	signature

53

signatureConfigurations/packaging string -	ENVELOPED	
-	ENVELOPING	
-	DETACHED	

signatureConfigurations/reason string OPTIONAL,	reason	for	signing

signatureConfigurations/location string OPTIONAL,	location	of	the	signature

signatureConfigurations/ref string If	reported,	the	same	value	will	be	returned	in	the
signature	result.

PAdES	configuration

This	setting	only	applies	for	signatures	whose	signatureType	is	of	type	PAdES	(PAdES	B,	PAdES	T,	PAdES	LT,	PAdES	LTA).

"padesConfiguration":	{

"stamper":	{	}

}

The	stamper	object	is	optional,	and	serves	to	define	a	visual	stamp	associated	with	the	PAdES	signature	.

{

		"stamper":	{

				"csvPath":"https://fortress.viafirma.com/fortress/v#",

				"imageB64":"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"logoB64":"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"page":	1,

				"rotation":"ROTATE_90",

				"textLine1":"Sample	line	1",

				"textLine2":"Sample	line	2",

				"textLine3":"Sample	line	3",

				"type":"QR_BARCODE128",

				"xAxis":	100,

				"yAxis":	100,

				"timeZoneId":"America/Santo_Domingo"

		}

}

Parameter Type Description

stamper/csvPath string Signature	Verification	URL

stamper/xAxis int Position	(on	the	X	axis)	of	the	signature	stamp

stamper/yAxis int Position	(on	the	Y	axis)	of	the	signature	stamp

stamper/imageB64 string Background	image	of	signature	stamp

stamper/logoB64 string Signature	Seal	Logo	(will	be	painted	on	the	bottom	right	side	of	the	seal)

stamper/page int Page	where	the	seal	will	be	painted.	You	can	use	the	value	-1	to	indicate	the
last	page	or	the	value	0	to	paint	the	stamp	on	all	pages	of	the	document

stamper/rotation string

Seal	rotation.	If	informed,	the	seal	will	rotate	the	indicated	degrees.	Possible
values:	
-	ROTATE_90	
-	ROTATE_270	

stamper/textLine1 string First	textual	line	to	be	painted	in	the	content	of	the	signature	seal

stamper/textLine2 string Second	textual	line	to	be	painted	in	the	content	of	the	signature	stamp

stamper/textLine3 string Third	textual	line	to	be	painted	in	the	content	of	the	signature	seal

stamper/type string

Stamp	type.	Available	values:	
-	PDF417	
-	QR_BARCODE128	
-	QR	

Unattended	signature

54

-	BARCODE128	
-	IMAGE	
-	TEXT	

stamper/timeZoneId string String	that	will	correspond	to	the	standard	list	of	time	zones.

Depending	on	the	type	chosen,	the	stamp	will	have	pre-established	dimensions	(in	pixels):

	PDF417	:	300x130
	QR_BARCODE128	:	600x100
	QR	:	450x50
	BARCODE128	:	550x70
	IMAGE	:	Maintains	the	dimensions	of	the	image	specified	in	imageB64	
	TEXT	:	400x50

	timeZoneId		value	is	NOT	reported	in	the	API	call,	we	will	apply	the	following	criteria:

In	case	of	unattended	signature,	if	the	Client	System	belongs	to	a	group	that	has	it	informed,	we	apply	the	one	of	the
first	group	that	has	it	informed,	if	not	we	apply	the	one	configured	by	default	in	the	system.

XAdES	Configuration

This	setting	only	applies	for	signatures	whose	signatureType	is	of	type	XAdES	(XAdES	B,	XAdES	T,	XAdES	LT,	XAdES	LTA)

{

"signedInfoCanonicalizationMethod":"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

"signedPropertiesCanonicalizationMethod":"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

"xPathLocationString":"//book[@id='bk101-1']",

"claimedSignerRoles":	[

			"role1",

			"role2"

],

"transformAlgorithms":	[

"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"

],

"dssReferenceUri":"http://dsa-reference.example.com/"

}

Where:

Parameter Type Description

signedInfoCanonicalizationMethod string Node	canonicalization	method	signedInfo	

signedPropertiesCanonicalizationMethod string Canonicalization	method	of	node	signedProperties	

xPathLocationString string Selector	of	the	node	under	which	the	signature	will	be
inserted,	in	XPath	format

claimedSignerRoles array Roles	of	the	signatory

transformAlgorithms array

Transformation	algorithms	for	nodes.	Possible	values:	
-	"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"	
-	"http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"	

-	"http://www.w3.org/2001/10/xml-exc-	c14n#"	
-	"http://www.w3.org/2001/10/xml-exc-c14n#WithComments"	
-	"http://www.w3.org/2006/12/xml-c14n11"	
-	"http://www.w3.org/2006/12/xml-c14n11#WithComments"	
-	"http://santuario.apache.org/c14n/physical"	

dssReferenceUri string Identifier	of	the	node	to	sign

TSA	Settings

Unattended	signature

55

For	signature	types	that	include	time	stamping,	the	TSA	settings	must	be	reported.

{

		"url":"http://tsa.example.com/",

		"user":"tsa_user",

		"password":"tsa_pass",

		"type":"USER",

		"certificateCode":"tsa_certificate_code"

}

Parameter Type Description

type string
TSA	type.	If	it	requires	authentication	with	user	and	password	,	we	will	use	the
value	USER	,	if	it	requires	authentication	with	a	certificate	CERTIFICATE	,	if	it	requires
authentication	with	a	TSL	certificate	CERTIFICATE_TLS	,	if	not,	the	value	URL	

user string User	for	TSA	authentication	(only	for	type	with	value	USER)

password string Password	for	TSA	authentication	(for	type	with	value	USER	or	CERTIFICATE_TLS)

url string TSA	URL

certificateCode string Certificate	code	for	TSA	authentication	(for	type	with
value	CERTIFICATE	or	CERTIFICATE_TLS)

Policy	settings

So	that	the	signature	has	a	policy	and	can	be	considered	EPES	type,	we	can	define	its	values	with	this	configuration.

{

		"id":"102039485-10283757-102837575",

		"description":"Sample	policies",

		"digestAlgorithm":"SHA256",

		"digestValueB64":"JVBERi0xLjMKJcTl8uXlRU9GC",

		"url"	:	"https://sample/lorem_ipsum_dolor_sit_amet.pdf",

		"contentHintsDescription":"Lorem	ipsum	dolor	sit	amet",

		"contentHintsType":"Lorem	ipsum	dolor	sit	amet"

}

Parameter Type Description

id string Policy	identifier

description string Policy	Description

digestAlgorithm string

Encryption	algorithm.	Possible	values:	
-	SHA1	
-	SHA224	
-	SHA256	
-	SHA384	
-	SHA512	
-	RIPEMD160	
-	MD2	
-	MD5	

digestValueB64 string Value	(Base64	encoded)

url string The	SpURI	(signature	policy	qualifier).	The	spURI	qualifier	will	contain	a
URL	value	where	a	copy	of	the	signing	policy	document	can	be	obtained.

contentHintsDescription string Help	Description

contentHintsType string Type	of	help

Service	response

Unattended	signature

56

The	response	from	this	service	will	be	given	(in	application/json	format)	as	follows:

{

		"authCode":"1aeb979ddcf247e9ad46ee73e19a326d",

		"exeCode":"f116305e7f7c44f3a29385028c5374ba"

}

Where:

Parameter Type Description

authCode string Authorization	code

exeCode string Execution	code

Service	errors

The	errors	returned	by	the	service	(returned	in	application/json	format)	look	like	this:

{

		"error":"error_code",

		"error_description":"error_description"

}

Where:

Parameter Type Description

error string Error	code

error_description string Error	Description

Possible	mistakes:

Error	code Error

invalid_request Wrong	request.	Some	of	the	input	parameters	are	not	correct.	(HTTP	Status	:	400)

invalid_token The	access_token	used	is	not	correct	(HTTP	Status	:	401)

Signature	execution
With	this	method	we	will	sign	the	documents	associated	with	the	signature	preparation	operation.

Use	of	the	service

Method:	POST		URL:	{viafirma_fortress_	url}/api/v1/signature/{executionCode}/execute	

Additionally,	the	access	token	(access_token)	must	be	included	in	the	HTTP	header	of	the	POST	request	as	follows:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	Base	URL	of	the	Viafirma	Fortress	implementation,	for	example
https://sandbox.viafirma.com/fortress	or	https://fortress.viafirma.com/fortress
	executionCode	:	Execution	code	returned	by	the	signature	method

Example:

Unattended	signature

57

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

Method:		POST	
URL:		{viafirma_fortress_	url}/api/v1/signature/f116305e7f7c44f3a29385028c5374ba/execute	
Request	header:		Authorization	:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Service	parameters

This	service	receives	by	parameters	the	execution	code	executionCode	,	resulting	from	the	signature	preparation
procedure,	with	this	code	we	will	obtain	the	information	associated	with	each	signing	operation.

It	must	be	provided	(in	application/json	format)	empty:

{

}

Service	Response

The	response	from	this	service	will	be	given	(in	application/json	format)	as	follows:

[

		{

				"bytesB64":"a910b000d4f1a2b...",

				"signatureCode":"e2470412-33cc-467a-b357-880fe621920f",

				"mimeType":"application/pdf",

				"ref":"#1"

		},

...

]

Where:

Parameter Type Description

bytesB64 string Signed	document,	Base64	encoded

signatureCode string Signature	identifier

mimeType string MIME	type	of	the	signed	document

ref string The	same	value	is	returned	if	it	was	reported	in	the	signature	request

Service	errors

The	errors	returned	by	the	service	(returned	in	application/json	format)	look	like	this:

{

		"error":"error_code",

		"error_description":"error_description"

}

Where:

Parameter Type Description

error string Error	code

error_description string Error	Description

Possible	mistakes:

Error	code Error

Wrong	request.	Some	of	the	input	parameters	are	not	correct.	(HTTP	Status	:	400)

Unattended	signature

58

Wrong	request.	Some	of	the	input	parameters	are	not	correct.	(HTTP	Status	:	400)

invalid_token The	access_token	used	is	not	correct	(HTTP	Status	:	401)

certificate_not_found The	certificate	you	want	to	sign	with	is	not	correct	or	is	not	active	(HTTP	Status	:
404)

invalidcertificate
password The	certificate	password	is	incorrect	(HTTP	Status:	401)

locked_certificate The	certificate	is	blocked	(HTTP	Status	:	401)

signature_error Error	during	signing	(HTTP	Status	:	500)

Download	signed	document
With	this	method	we	can	download	a	signed	document	using	a	signature	identifier.

Use	of	the	service

Method:	GET		URL:	{viafirma_fortress_	url}/api/v1/signature/download/{signature_code}	

Additionally,	the	access	token	(access_token)	must	be	included	in	the	HTTP	header	of	the	GET	request	as	follows:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	Base	URL	of	the	Viafirma	Fortress	implementation,	for	example
https://sandbox.viafirma.com/fortress	or	https://fortress.viafirma.com/fortress
	signature_code	:	Code	of	the	signature	from	which	you	want	to	download	the	document

Example:

Method:		GET		URL:		{viafirma_fortress_	url}/api/v1/signature/download/C0XJ-XOAK-OF1O-TYJ7-S164-3197-3571-05	

Service	Response

The	response	from	this	service	will	be	given	(in	application/octet-stream	format)

Service	errors

The	errors	returned	by	the	service	(returned	in	application/json	format)	look	like	this:

{

		"error":"error_code",

		"error_description":"error_description"

}

Where:

Parameter Type Description

error string Error	code

error_description string Error	Description

Possible	mistakes:

Error	code Error

Unattended	signature

59

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

document_not_found No	document	found	for	the	provided	signature	ID	(HTTP	Status	:	404)

Unattended	signature

60

Extend	Signature	API
An	Access	Token	is	required	to	authorize	all	API	requests,	as	explained	at	the	following	link:

get	Access	Token

DIGITAL	EXTEND	SIGNATURE	REQUEST

REST	service	specs:

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature/extend	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress

Sample	Request

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/signature/extend	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Request	Params

The	request	body	contains	information	such	as	signature	format,	document	to	be	signed,	etc.

	application/json		format	is	used:

{

		"extendSignatureConfigurations":	[

				{

						"document":	{

								"bytesB64":	"JVBERi0xLjMKJcTl8uXrp/Og0MTGCjQ...",

								"name":	"contract.pdf"

						},

						"signatureType":	"PADES_LTA",

						"signatureAlgorithm":	"RSA_SHA256",

						"packaging":	"ENVELOPED",

						"padesConfiguration":	{

								"stamper":	{

										"csvPath":	"http://<someURL>/v#",

										"logoB64":	"iVBORw0KGgoAAAANSUhEUgAAAWYAAABsCAYAAABZyhj...",

										"page":	1,

										"type":	"QR_BARCODE128",

										"xAxis":	80,

										"yAxis":	700

								}

						},

						"tsa":	{

								"type":	"URL",

								"url":	"https://testservices.viafirma.com/via-tsa/tsa"

						}

				}

Extend	signature

61

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

]

}

Note:	params	for		padesConfiguration	,		xadesConfiguration	,		tsa		and		policy		are	described	later.

Where:

Param Type Desc

userCode string OPTIONAL,	used	to	to	specify	the	signer	user.	If	null,	user	will	be	requested	to
authenticate	before	signing.

document/bytesB64 string Document	to	be	signed	(Base64)

signatureType string

Signature	format:
-		CADES_T	
-		CADES_LT	
-		CADES_LTA	
-		PADES_T	
-		PADES_LT	
-		PADES_LTA		
-		XADES_T		
-		XADES_LT		
-		XADES_LTA		
-		PKCS1	

signatureAlgorithm string

signature	algorithm:	
-		RSA_SHA1	
-		RSA_SHA224	
-		RSA_SHA256	
-		RSA_SHA384	
-		RSA_SHA512	

packaging string

signature	type:	
-		ENVELOPED	
-		ENVELOPING	
-		DETACHED	

PAdES	Configuration

Params	only	applicable	to		signatureType		PAdES	(PAdES	T,	PAdES	LT,	PAdES	LTA).

"padesConfiguration":	{

				"stamper":	{	}

}

The	stamper	object	is	optional,	and	it	defines	a	visual	stamp	associated	with	the	signature	PAdES.

{

		"stamper":	{

				"csvPath":	"https://sandbox.viafirma.com/fortress/v#",

				"imageB64":	"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"logoB64":	"JVBERi0xLjMKJcTl8uXlRU9GC...",

				"page":	1,

				"rotation":	"ROTATE_90",

				"textLine1":	"Sample	line	1",

				"textLine2":	"Sample	line	2",

				"textLine3":	"Sample	line	3",

				"type":	"QR_BARCODE128",

				"xAxis":	100,

				"yAxis":	100

		}

}

Param Type Desc

Extend	signature

62

stamper/csvPath string public	URL	for	validating	signed	documents

stamper/xAxis int Stamper	position	on	PDF;	X-coordinates

stamper/yAxis int Stamper	position	on	PDF;	Y-coordinates

stamper/imageB64 string Stamper	watermark	(Base64)

stamper/imageUrl string Stamper	watermark	(URL)

stamper/logoB64 string Logo	to	be	printed	(Base64)

stamper/page int Page	number	where	stamper	will	be	embedded.	Value		-1		for	last	page,		0	
for	all	pages.

stamper/rotation string
OPTIONAL.	Rotation	degrees:	
-		ROTATE_90	
-		ROTATE_270	

stamper/textLine1 string OPTIONAL.	Text	included	in	the	stamper	(line	1).

stamper/textLine2 string OPTIONAL.	Text	included	in	the	stamper	(line	2).

stamper/textLine3 string OPTIONAL.	Text	included	in	the	stamper	(line	3).

stamper/type string

Stamper	type:	
-		PDF417	
-		QR_BARCODE128	
-		QR	
-		BARCODE128	
-		IMAGE	
-		TEXT	
-		QR_NO_TEXT	
-		QR_SCALED	
-		CUSTOM_TEXT	
-		QR_REDUCED	
-		CSV	
-		CSV_QR	
-		IMAGE_TEXT	
-		DEFAULT	

stamper/timeZoneId string Set	the	Time	Zone.	for	stamper	date	to	be	printed

XAdES	Configuration

Params	only	applicable	to		signatureType		XAdES	(XAdES	B,	XAdES	T,	XAdES	LT,	XAdES	LTA)

{

		"signedInfoCanonicalizationMethod":	"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

		"signedPropertiesCanonicalizationMethod":	"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",

		"xPathLocationString":	"//book[@id='bk101-1']",

		"claimedSignerRoles":	[

				"role1",

				"role2"

],

		"transformAlgorithms":	[

				"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"

],

		"dssReferenceUri":	"http://dsa-reference.example.com/"

}

Where:

Param Type Desc

signedInfoCanonicalizationMethod string Canonicalization	Method	of	node		signedInfo	

signedPropertiesCanonicalizationMethod string Canonicalization	Method	of	node		signedProperties	

xPathLocationString string XPath	of	ID	node	(XML)	to	be	signed

Extend	signature

63

claimedSignerRoles array Signer	role

transformAlgorithms array

Transform	Algorithm	of	signed	node:	
-		"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"	
-		"http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"	

-		"http://www.w3.org/2001/10/xml-exc-c14n#"	
-		"http://www.w3.org/2001/10/xml-exc-c14n#WithComments"	
-		"http://www.w3.org/2006/12/xml-c14n11"	
-		"http://www.w3.org/2006/12/xml-c14n11#WithComments"	
-		"http://santuario.apache.org/c14n/physical"	

dssReferenceUri string ID	node	(XML)	to	be	signed

TSA	Configuration

TSA	configuration	is	mandatory	if	a	signature	format	that	requires	timestamp	is	used:

{

		"url":	"http://tsa.example.com/",

		"user":	"tsa_user",

		"password":	"tsa_pass",

		"type":	"USER",

		"certificateCode":	"tsa_certificate_code"

}

Param Type Desc

type string Authentication	type:		USER			CERTIFICATE			CERTIFICATE_TLS		of		URL		(if	authentication	is
not	required)

user string OPTIONAL.	Only	when		USER			type		is	used

password string OPTIONAL.	Only	when		USER		or		CERTIFICATE		or		CERTIFICATE_TLS			type		is	used

url string TSA	url

certificateCode string OPTIONAL.	Only	when		CERTIFICATE		or		CERTIFICATE_TLS			type		is	used

POLICIES	Configuration

Only	applicable	to	XAdES	EPES	format;	a	Signature	Policy	can	be	defined:

{

		"id":	"102039485-10283757-102837575",

		"description":	"Sample	policy",

		"digestAlgorithm":	"SHA256",

		"digestValueB64":	"JVBERi0xLjMKJcTl8uXlRU9GC",

		"contentHintsDescription":	"Lorem	ipsum	dolor	sit	amet",

		"contentHintsType":	"Lorem	ipsum	dolor	sit	amet"

}

Param Type Desc

id string Policy	id

description string Policy	description

digestAlgorithm string

Cipher	Algorithm:	
-		SHA1	
-		SHA224	
-		SHA256	
-		SHA384	
-		SHA512	
-		RIPEMD160	

Extend	signature

64

-		MD2	
-		MD5	

digestValueB64 string Policy	Digest	value	(Base64)

contentHintsDescription string Help	Description

contentHintsType string Help	content	type

Response

Response	in		application/json		format:

{

		"ref":	"d8e3d98dc20e46188fd067df28048934",

		"bytesB64":	"MIMBKM8GCSqGSIb3DQEHAqCDASi/MIMBKLoCAQUxDzANBglghkgBZQMEAgEFADCC1QsGCSqGSIb3DQEHAaCC1PwEgtT4JVBERi0xLjMKJcTl8uX

rp..."

}

Where:

Param Type Desc

ref string reference	code

bytesB64 string Extend	signed	document	(Base64)

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error	desc

invalid_request Bad	request.	Incorrect	of	insufficient	request	params.	(HTTP	Status:	400)

invalid_token Invalid		access_token		(HTTP	Status:	401)

user_not_found Incorrect	or	inactive	user	(HTTP	Status:	404)

Extend	signature

65

Encrypt	/	Decrypt	API

Last	revision:	april	05th	2021

An	Access	Token	is	required	to	authorize	all	API	requests,	as	explained	at	the	following	link:

Get	Client	Access	Token

Encrypt	/	Decrypt	request
Encrypt	/	Decrypt	the	request	bytes	with	RSA	using	client	or	group	certificate.

REST	service	specs:

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/encrypt	

Security:

Authorization:	Bearer	{access_token}

Where:

	viafirma_fortress_url	:	URL	of	the	Fortress	implementation,	for	example	https://sandbox.viafirma.com/fortress	or
https://fortress.viafirma.com/fortress

Sample	Request

Method:		POST	
URL:		{viafirma_fortress_url}/api/v1/encrypt	

Security	Header:		Authorization:	Bearer	0b79bab50daca910b000d4f1a2b675d604257e42	

Request	Params

The	request	body	contains	the	encryption	/	decryption	request	information		application/json		format	is	used:

{

		"certificateCode":	"580fe337eba1483683290cbbf94982a3",

		"mode":	"ENCRYPT",

		"bytesB64":	"dGVzdA=="

}

Where:

Param Type Desc

certificateCode string Used	to	specify	which	client	or	group	certificate	will	be	chosen	to	encrypt	/	decrypt.
Certificate	public	key	will	be	used	to	encrypt	and	private	key	to	decrypt.

mode string Select	encrypt	or	decrypt	mode.	The	allowed	values	are		ENCRYPT	,		DECRYPT	.

bytesB64 string Content	to	encrypt	/	decrypt

Response

Encrypt	/	Decrypt

66

https://sandbox.viafirma.com/fortress
https://fortress.viafirma.com/fortress

Response	in		application/json		format:

{

		"bytesB64":	"ggj5mRTVh3FKAz4wf2EmaX7Zfr...=="

}

Where:

Param Type Desc

bytesB64 string Encryption	/	decryption	certificateRequestEntity	(Base	64)

API	Errors

Errors	are	returned	using		application/json		format:

{

		"error":	"error_code",

		"error_description":	"error_description"

}

Where:

Param Type Desc

error string Error	code

error_description string Error	description

Errors:

Error	code Error	desc

invalid_request Bad	request.	Incorrect	of	insufficient	request	params.	(HTTP	Status:	400)

invalid_token Invalid		access_token		(HTTP	Status:	401)

certificate_not_found Incorrect	or	inactive	certificate	code	(HTTP	Status:	404)

Encrypt	/	Decrypt

67

Quick	integration	examples
Note:	All	references	to	Base64-encoded	files	or	documents	are	truncated	to	make	this	documentation	easier	to	read.

User	authentication,	query	operations
The	third	application"SAMPLE	APP"wants	to	authenticate	a	user	to	query	the	user	data,	whose	code	is 	sample_user	.

Previous	requirements:

The	application	must	be	registered	as	a	client	system	in	Viafirma	Fortress
You	must	have	been	provided	with	a	client_id	.	In	this	example	it	will	be	sample_app	
You	must	have	been	provided	with	a	client_secret	.	In	this	example	it	will	be	12345	
You	must	have	an	allowed	return	URL	configured:	http://www.example.com/auth	

When	the"SAMPLE	APP"application	wants	to	authenticate	the	user	against	Viafirma	Fortress,	it	will	redirect	the	user	to	a
URL:

{viafirma_fortress_url}/oauth2/v1/auth?

scope=profile&

state=&

redirect_uri=http://www.example.com/auth&

response_type=code&

client_id=sample_app&

user_code=sample_user

In	this	URL	the	user	will	be	presented	with	the	different	Viafirma	Fortress	authentication	factors	in	which	they	are
enrolled.	You	will	use	one	of	them	to	authenticate	and	authorize	the	operation.	Once	the	process	is	finished,	Viafirma
Fortress	will	return	control	to	the"SAMPLE	APP"application,	redirecting	to	the	return	URL:	http://www.example.com/auth?
state=&code=e2470412-33cc-467a-b357-880fe621920f	

This	URL	will	be	sent	as	a	URL	parameter	the	value	of	the	authorization	code,	with	which	you	can	request	an	access
tokenwith	which	to	operate	(e.g.	obtain	information	about	the	user's	status).

To	obtain	this	access	token,	the"SAMPLE	APP"application	will	make	a	request	to	Viafirma	Fortress:

Method:		POST	
URL:		https://fortress.viafirma.com/fortress/oauth2/v1/token	
Parameters:

	code	:	Whose	value	is	the	authorization	code	previously	obtained:	"e2470412-33cc-467a-b357-880fe621920f"	
	client_id	:	Whose	value	is	the	one	determined	in	Viafirma	Fortress	for	the	application"SAMPLE
APP":	"sample_app"	
	client_secret	:	Whose	value	is	the	one	determined	in	Viafirma	Fortress	for	the	application"SAMPLE
APP":	"12345"	
	redirect_uri	:	whose	value	is	the	return	URL	for	which	the	authorization	request	was
made:	"http://www.example.com/auth"	
	grant_type	:	This	value	is	fixed:	"authorization_code"	

The	result	of	this 	POST	request	will	be:

{

	"access_token":"1/fFAGRNJru1FTz70BzhT3Zg",

	"expires_in":	3920,

	"token_type":"Bearer"

}

Quick	integration	examples

68

Once	these	values	are	obtained,	we	can	consider	that	the	user	has	been	correctly	authenticated.	We	can	also	use	the
value	of	access_token	to	perform	query	operations	on	the	Viafirma	Fortress	API	(for	example,	obtain	the	user's	status,	the
certificates	of	a	user	"scope=CERTIFICATES"	or	the	detail	of	a	certificate	"scope=CERTIFICATE").

Signing	a	PDF	document
The	third	application"SAMPLE	APP"wants	the	user	sample_user	to	sign	a	PDF	document.

Previous	requirements:

The	application	must	be	registered	as	a	client	system	in	Viafirma	Fortress
You	must	have	been	provided	with	a	client_id	.	In	this	example	it	will	be	sample_app	
You	must	have	been	provided	with	a	client_secret	.	In	this	example	it	will	be	12345	
You	must	have	an	allowed	return	URL	configured:	http://www.example.com/sign	

Get	client	token

At	the	time	when	the"SAMPLE	APP"application	wants	to	start	the	PDF	document	signing	operation,	it	must	obtain	a	client
system	token.

To	obtain	this	access	token,	the"SAMPLE	APP"application	will	make	a	request	to	Viafirma	Fortress:

Method:	POST	
URL:	https://fortress.viafirma.com/fortress/oauth2/v1/token	
Parameters:

	client_id	:	Whose	value	is	the	one	determined	in	Viafirma	Fortress	for	the	application	"SAMPLE
APP":	"sample_app"	
	client_secret	:	Whose	value	is	the	one	determined	in	Viafirma	Fortress	for	the	application	"SAMPLE
APP":	"12345"	
	redirect_uri	:	whose	value	is	the	return	URL	for	which	the	authorization	request	was	made:
	"http://www.example.com/auth/response"	

	grant_type	:	This	value	is	fixed:		"client_credentials"	

https://fortress.viafirma.com/fortress/oauth2/v1/token?

grant_type=client_credentials&

redirect_uri=http://www.example.com/auth/response&

client_id=sample_app&

client_secret	=12345

The	result	of	this 	POST	request	will	be:

{

		"access_token":"666b3b58ecb54db784e2eafdfc66e113",

		"expires_in":	3920,

			"token_type":"Bearer"

}

Signature	Request

With	the	access_token	resulting	from	the	call,	the	client	system	will	call	the	signature	method	:

Method:	POST		URL:	https://fortress.viafirma.com/fortress/api/v1/signature		Request	header	:	Authorization	:	Bearer
666b3b58ecb54db784e2eafdfc66e113	

{

		"userCode":"abcde",

		"redirectUri":"http://localhost:8080/fortress-demo/sign",

		"signatureConfigurations":	[

Quick	integration	examples

69

				{

						"signatureType":"PADES_B",

						"signatureAlgorithm":"RSA_SHA256",

						"packaging":"ENVELOPED",

						"document":	{

								"name":"example.pdf",

								"bytesB64":"JVBERi0xLjMKJcTl8uXrp/Og0MTGCjQgMCBvYmoKPDwgL0xlbmd0aC..."

						},

						"padesConfiguration":	{

								"stamper":	{

										"csvPath":"http://localhost:7080/fortress/v#",

										"logoB64":"iVBORw0KGgoAAAANSUhEUgA...",

										"page":	1,

										"type":"QR_BARCODE128",

										"xAxis":	80,

										"yAxis":	700

								}

						}

				}

]

}

In	the	body	of	the	method	the	system	must	include	a	json	with	the	following	format:

userCode	:	user	code
redirectUri	:	Uri	where	you	should	redirect	the	operation	once	it	is	finished
signatureConfigurations	:	for	each	document	to	be	signed,	the	document,	the	type	of	signature	and	the	signing
policies	must	be	indicated.

The	result	of	this 	POST	request	will	be:

{

		"authCode":"d8e3d98dc20e46188fd067df28048934",

		"exeCode":"cae2c9fe4f4b41888d42ac18a88096a2"

}

Signature	Request	Authorization

When	the"SAMPLE	APP"application	wants	to	begin	the	signing	operation	of	the	PDF	document,	it	will	redirect	the	user	to
a	URL	to	authorize	the	signing	operation	and	select	the	certificate	to	use:

https://sandbox.viafirma.com/fortress/oauth2/v1/auth?signature_code=7b3e77ad2aef4e479c2ae39f497cfe0c&scope=signature&client_id

=fortress-dem&redirect_uri=https%3A%2F%2Fsandbox.viafirma.com%2fortress-demo%2Fsign%2Fresponse

In	this	URL	the	user	will	be	presented	with	the	different	Viafirma	Fortress	authentication	factors	in	which	they	are
enrolled.	You	will	use	one	of	them	to	authenticate	and	authorize	the	signing	operation.	Once	authenticated,	you	will	be
shown	the	different	certificates	that	Viafirma	Fortress	is	holding	for	this	user,	so	you	can	select	which	one	you	want	to
sign	with.

Execute	Signature

Once	these	values	are	obtained,	we	can	consider	that	the	user	has	been	correctly	authenticated	and	has	authorized	the
signing	operation,	so	the	signing	service	can	be	called.	To	do	this,	a	request	is	made	to	Viafirma	Fortress,	including	the
access	token	and	certificate	identifier	obtained	in	the	previous	step:

HTTP	method:	POST	
URL:	https://fortress.viafirma.com/fortress/api/v1/signature/cae2c9fe4f4b41888d42ac18a88096a2/execute		Request	header
:	Authorization	:	Bearer	666b3b58ecb54db784e2eafdfc66e113	

The	response	of	this	service	will	be:

Quick	integration	examples

70

{

		"documentB64":"LjMKJcTl8u...",

		"mimeType":"application/pdf",

		"signatureCode":"TFOR-TRES-SOAK-OF1O-TXFR-5151-8007-9109-77"

}

In	the	documentB64	attribute	we	will	have	the	signed	document	(encoded	in	Base64),	and	in	signatureCode	the	signature
identifier.

Signature	Extension

With	the	access_token	resulting	from	the	call,	the	client	system	will	call	the	extend	method:

Method:	POST		URL:	https://fortress.viafirma.com/fortress/api/v1/signature/extend		Request	header	:	Authorization	:	Bearer
666b3b58ecb54db784e2eafdfc66e113	

{

		"extendSignatureConfigurations":	[

				{

						"document":	{

								"bytesB64":	"JVBERi0xLjMKJcTl8uXrp/Og0MTGCjQ...",

								"name":	"contrato.pdf"

						},

						"signatureType":	"PADES_LTA",

						"signatureAlgorithm":	"RSA_SHA256",

						"packaging":	"ENVELOPED",

						"tsa":	{

								"type":	"URL",

								"url":	"https://testservices.viafirma.com/via-tsa/tsa"

						}

				}

]

}

In	the	body	of	the	method	the	system	must	include	a	json	with	the	following	format:

userCode	:	user	code
redirectUri	:	Uri	where	you	should	redirect	the	operation	once	it	is	finished
extendSignatureConfigurations	:	for	each	document	to	be	signed,	the	document,	the	type	of	signature	and	the
signing	policies	must	be	indicated.

The	result	of	this 	POST	request	will	be:

{

"ref":"d8e3d98dc20e46188fd067df28048934",

"bytesB64":"MIMBKM8GCSqGSIb3DQEHAqCDASi/MIMBKLoCAQUxDzANBglghkgBZQMEAgEFADCC1QsGCSqGSIb3DQEHAaCC1PwEgtT4JVBERi0xLjMKJcTl8uXrp.

.."

}

Quick	integration	examples

71

Sample	application
A	sample	Fortress	client	application	is	provided	to	help	developers	to	integrate	third-party	apps	with	Viafirma	Fortress.
This	basic	web	application	shows	how	to	use	the	main	API	services:

Retrieve	user	information	(to	check	if	it	has	active	certificates	and	IDPs).
User	authentication.
Authorization	request	to	sign	a	document.
PAdES	and	XAdES	signature.
Batch	signature.

Source	code

Prerequisites
JDK	1.7+
Maven	3.0+

Request	credentials	from	the	commercial	department:

	client_id	.	In	this	example	it	will	be		sample_app	
	client_secret	.	In	this	example	it	will	be		12345	

Quickstart
The	sample	application	is	based	on	Spring	Boot	and	includes	an	embedded	Tomcat	server	to	simplify	the	execution.

The	app	can	be	imported	in	any	IDE	and	execute		com.viafirma.fortress.demo.FortressDemoApplication		class.
Once	imported,	you	must	configure	the	credentials	provided	in	the	fortress-demo.properties	file	located	in
/src/main/resource,	for	example:

fortress.demo.api.url=https://sandbox.viafirma.com/fortress/

fortress.demo.api.client_id=sample_app

fortress.demo.api.client_secret=12345

Once	set	up,	you	will	be	able	to:
Start	the	application	with	the	command		mvn	spring-boot:run	.
Compile	the	application	with		mvn	clean	package		and	deploy	the	WAR	to	a	Tomcat	container	or	run	it	directly:

java	-jar	target/viafirma-fortress-demo.war

Testing	the	application
Once	the	application	has	started,	the	main	page	is	accesible	in	any	web	browser:

http://localhost:8080/fortress-demo/

it	is	also	available	in	the	sandbox	environment:

https://sandbox.viafirma.com/fortress-demo/

Sample	application

72

https://doc.viafirma.com/viafirma-fortress/integration/en/resources/viafirma-fortress-demo.zip
https://www.oracle.com/java/technologies/downloads/
https://maven.apache.org/
https://projects.spring.io/spring-boot/
https://tomcat.apache.org/

Login	screen

The	first	interface	(login	screen)	is	just	used	to	get	Fortress	user	code.	Please	enter	a	valid	user	code	(for	instance,
	12345678Z)	and	any	password	(it	will	not	be	checked).	If	the	user	code	does	not	exist,	user	will	not	be	able	to	check
authentication	or	digital	signature	with	a	centralized	digital	certificate.

Main	screen

If	the	entered	user	has	certificates	/	IDPs	associated,	authentication	and	signing	buttons	are	enabled,	with	different
options	to	sign	documents:	PDF	(PAdES),	XML	(XAdES)	or	batch	signature.

User	authentication

Test	user		12345678Z		can	be	used,	with	PIN	IDP		1234		and	OTP	(soft	token)	IDP	based	on	Google	Authenticator,	scanning
the	attached	QR	Code:

Sample	application

73

Viafirma	Fortress	Desktop	-	Windows	client

Rev:	2019-01-14

Viafirma	Fortress	Desktop	client	(available	for	Windows	7-8-10),	the	centralized	certificates	can	be	used	for
authentication	and	signature	operations	in	external	websites	and	applications,	as	if	the	certificates	were	locally	installed.

Production	version

The	production	version	is	available	in	the	following	URL:

https://fortress.viafirma.com/

Other	environments

Developers	usually	use	the	application	in	different	environments	for	testing	purposes.	There	is	a	version	which	allows
users	to	modify	the	Fortress	endpoint.	It	is	available	in	the	following	URLs:

Viafirma	Fortress	Desktop	for	DEVELOPERS	64	bits
Viafirma	Fortress	Desktop	for	DEVELOPERS	32	bits

Fortress	Desktop	(CSP)

74

https://fortress.viafirma.com/
https://descargas.viafirma.com/fortress/desktop/integrador/viafirma-fortress-desktop-x64.exe
https://descargas.viafirma.com/fortress/desktop/integrador/viafirma-fortress-desktop-x86.exe

	Introduction
	Auth operations
	Signature operations
	Unattended signature operations
	Extend signature operations
	API
	Ping
	User profile
	Certificate
	Sign
	Unattended signature
	Extend signature
	Encrypt / Decrypt

	Quick integration examples
	Sample application
	Fortress Desktop (CSP)

